© Michał Jamro
© Michał Jamro

Festkörperbatterie punktet mit mehr Leistungsfähigkeit

Forscher der Empa und der Universität Genf haben einen Prototypen einer neuartigen Natrium-Festkörperbatterie entwickelt, der in Zukunft Energie noch sicherer speichern soll.

Der Einsatz von Batterien nimmt zu, wir haben sie im Telefon oder auch im Laptop. Außerdem gibt es immer mehr Elektroautos, Batterien sind aus unserem Alltag nicht mehr wegzudenken. Sie werden in den letzten Jahren ständig leichter, leistungsfähiger und langlebiger. Derzeit ist kommerziell die Lithiumionen-Technologie am meisten verbreitet. Lithiumionen-Batterien sind aber immer noch relativ teuer und die Nachfrage nach Batterien für den Einsatz in Elektroautos oder für die Speicherung erneuerbarer Energien wächst. Das ist der Grund, warum Forscher der Empa und der Universität Genf (UNIGE) einen Prototypen einer so genannten Festkörperbatterie entwickelt haben, die mehr Energie speichern kann und trotzdem sicher und zuuverlässig ist. Zudem basiert diese Batterie auf Natrium, einer kostengünstigeren Alternative zu Lithium. Nachzulesen sind diese Forschungsergebnisse in der Zeitschrift Energy and Environmental Science.

Eine Batterie besteht aus drei grundlegenden Komponenten: der Anode (negativer Pol), der Kathode (positiver Pol) und dem Elektrolyten. Die Akkus der meisten heutigen elektronischen Geräte basieren auf Lithiumionen. Beim Aufladen verlassen die Ionen die Kathode und wandern durch den flüssigen Elektrolyten zur Anode. Damit sich keine Lithiumdendriten bilden - eine Art mikroskopisch kleiner Stalagmiten, die Kurzschlüsse in der Batterie auslösen und zu einem Brandrisiko führen können -, besteht bei den handelsüblichen Batterien die Anode aus Graphit und nicht aus metallischem Lithium, obwohl man mit diesem Ultraleichtmetall die gespeicherte Energiemenge steigern könnte.

Die Forscher und Forscherinnen haben ihren Fokus auf die Festkörperbatterie gelegt. Diese Technologie hat das Potenzial, die zunehmende Nachfrage zu decken und gleichzeitig leistungsfähigere Akkus zu ermöglichen, die sich schneller laden lassen, eine grössere Energiemenge aufnehmen können und mehr Sicherheit bieten. Die Verwendung eines Festkörperelektrolyten kann Dendritenbildung unterdrücken, was wiederum den Einsatz von metallischen Anoden und somit höhere Energiedichten ermöglicht.

Ein nicht brennbarer Akku mit festem Natrium

«Wir benötigten jedoch noch einen geeigneten festen Ionenleiter, der chemisch sowie thermisch stabil und nicht toxisch ist. Er sollte ausserdem den Transport des Natriums von der Anode zur Kathode ermöglichen», erklärt Hans Hagemann, Professor am Departement für physikalische Chemie der Fakultät für Naturwissenschaften der UNIGE. Die Forscher entdeckten, dass der borhaltigen Stoff closo-Boran den Natrium-Ionen erlaubt, relativ frei zu zirkulieren. Zudem ist closo-Boran ein anorganischer Elektrolyt, der im Vergleich zu den flüssigen Elektrolyten in Lithiumionen-Batterien nicht brennbar ist. Es handelt sich also um ein Material mit vielversprechenden Eigenschaften.

«Die Schwierigkeit bestand nun darin, einen engen Kontakt zwischen den drei Komponenten herzustellen: zwischen der Anode aus festem metallischem Natrium, der Kathode aus Natriumchromoxid sowie dem Elektrolyten, dem closo-Boran», erläutert Léo Duchêne, Wissenschaftler im Labor «Materials for Energy Conversion» der Empa und Doktorand am Departement für physikalische Chemie der Fakultät für Naturwissenschaften an der UNIGE. Dazu lösten die Forschenden einen Teil des festen Elektrolyten in einem Lösungsmittel und fügten dann das Kathodenmaterial hinzu. Sobald das Lösungsmittel verdampft war, schichteten sie dieses kompakte Pulver mit dem Elektrolyten sowie der Anode auf und pressten die einzelnen Schichten zu einer festen Batterie zusammen.

Im Anschluss testeten die Wissenschaftler der Empa und der UNIGE die Batterie. «Die elektrochemische Stabilität des von uns hier eingesetzten Elektrolyts hält einer Spannung von drei Volt stand. Viele der früher untersuchten festen Elektrolyte werden bei diesem Wert bereits zersetzt», erklärt der Empa-Wissenschaftler Arndt Remhof, der dieses vom Schweizer Nationalfonds (SNF) und vom SCCER Heat & Eletricity Storage (SSCER-HaE) unterstützte Projekt leitet. Die Wissenschaftler führten 250 Lade- und Entladezyklen an dem Akku durch, mit dem Ergebnis, dass danach noch 85 % der Energiekapazität verfügbar waren. "Für eine marktfähige Batterie müssen es jedoch 1200 Zyklen sein», merken die Forscher an. «Zudem müssen wir die Batterien bei Umgebungstemperatur testen, um nachweisen zu können, dass sich keine Dendriten bilden. Gleichzeitig wollen wir die Spannung weiter erhöhen. Unsere Arbeit ist also noch nicht abgeschlossen.»


Artikel Online geschaltet von: / Doris Holler /